Skip to content

SpinElfLabeler

Labels chemical features present in the ELF and collects various properties e.g charge, volume, elf value, etc. The spin-up and spin-down systems are treated separately and results can be viewed combined or independently.

Parameters:

Name Type Description Default
charge_grid Grid

A charge density Grid object. The total charge density (spin-up + spin-down) should be stored in the 'total' property and the difference (spin-up - spin-down) should be stored in the 'diff' property.

required
reference_grid Grid

An ELF Grid object. The spin-up ELF should be stored in the 'total' property and the spin-down ELF should be stored in the 'diff' property.

required
**kwargs dict

Any keyword argumetns to pass to the child ElfLabeler classes used for each spin.

{}
Source code in src/baderkit/core/labelers/elf_labeler/elf_labeler_spin.py
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
class SpinElfLabeler:
    """
    Labels chemical features present in the ELF and collects various properties
    e.g charge, volume, elf value, etc. The spin-up and spin-down systems are
    treated separately and results can be viewed combined or independently.

    Parameters
    ----------
    charge_grid : Grid
        A charge density Grid object. The total charge density (spin-up + spin-down)
        should be stored in the 'total' property and the difference (spin-up - spin-down)
        should be stored in the 'diff' property.
    reference_grid : Grid
        An ELF Grid object. The spin-up ELF should be stored in the 'total' property
        and the spin-down ELF should be stored in the 'diff' property.
    **kwargs : dict
        Any keyword argumetns to pass to the child ElfLabeler classes used for
        each spin.

    """

    spin_system = "combined"

    def __init__(
        self,
        charge_grid: Grid,
        reference_grid: Grid,
        **kwargs,
    ):

        # First make sure the grids are actually spin polarized
        assert (
            reference_grid.is_spin_polarized and charge_grid.is_spin_polarized
        ), "ELF must be spin polarized. Use a spin polarized calculation or switch to the ElfLabeler class."
        # store the original grid
        self.original_reference_grid = reference_grid
        self.original_charge_grid = charge_grid
        # split the grids to spin up and spin down
        self.reference_grid_up, self.reference_grid_down = (
            reference_grid.split_to_spin()
        )
        self.charge_grid_up, self.charge_grid_down = charge_grid.split_to_spin()
        # check if spin up and spin down are the same
        if np.allclose(
            self.reference_grid_up.total,
            self.reference_grid_down.total,
            rtol=0,
            atol=1e-4,
        ):
            logging.info(
                "Spin grids are found to be equal. Only spin-up system will be used."
            )
            self.equal_spin = True
        else:
            self.equal_spin = False
        # create spin up and spin down elf analyzer instances
        self.elf_labeler_up = ElfLabeler(
            reference_grid=self.reference_grid_up,
            charge_grid=self.charge_grid_up,
            **kwargs,
        )
        if not self.equal_spin:
            self.elf_labeler_down = ElfLabeler(
                reference_grid=self.reference_grid_down,
                charge_grid=self.charge_grid_down,
                **kwargs,
            )
            self.elf_labeler_up.spin_system = "up"
            self.elf_labeler_down.spin_system = "down"
        else:
            self.elf_labeler_down = self.elf_labeler_up
            self.elf_labeler_up.spin_system = "half"  # same up/down

        # calculated properties
        self._labeled_structure = None
        self._electride_structure = None
        self._atom_elf_radii = None
        self._atom_elf_radii_types = None
        self._atom_nn_elf_radii = None
        self._atom_nn_elf_radii_types = None
        self._nearest_neighbor_data = None
        self._electrides_per_formula = None
        self._electrides_per_reduced_formula = None

    ###########################################################################
    # Properties combining spin up and spin down systems
    ###########################################################################

    @property
    def structure(self) -> Structure:
        """

        Returns
        -------
        Structure
            The PyMatGen Structure representing the system.

        """
        structure = self.original_reference_grid.structure.copy()
        return structure

    @property
    def nearest_neighbor_data(self) -> list:
        """

        Returns
        -------
        tuple
            The nearest neighbor data for the atoms in the system represented as
            a tuple of arrays. The arrays represent, in order, the central
            atoms index, its neighbors index, the fractional coordinates of the
            neighbor, and the distance between the two sites.

        """
        if self._nearest_neighbor_data is None:
            # get nearest neighbors from spin up labeler
            nearest_neighbor_data = self.elf_labeler_up.nearest_neighbor_data
            # set spin down for speed
            self.elf_labeler_down._nearest_neighbor_data = nearest_neighbor_data
            self._nearest_neighbor_data = nearest_neighbor_data
        return self._nearest_neighbor_data

    @property
    def atom_elf_radii(self) -> NDArray[np.float64]:
        """

        Returns
        -------
        NDArray
            The radius of each atom calculated from the ELF using the closest
            neighboring atom in the structure. This is taken as the average value
            from both spin systems.

        """
        if self._atom_elf_radii is None:
            # get the atomic radii from the spin up/down systems
            spin_up_radii = self.elf_labeler_up.atom_elf_radii
            spin_down_radii = self.elf_labeler_down.atom_elf_radii
            self._atom_elf_radii = (spin_up_radii + spin_down_radii) / 2
        return self._atom_elf_radii

    @property
    def atom_elf_radii_types(self) -> NDArray[np.float64]:
        """

        Returns
        -------
        NDArray
            The type of radius of each elf radius. Covalent indicates that the
            bond crosses through some covalent or metallic region, and the radius
            is placed at the maximum in the ELF in this region. Ionic indicates
            that the bond does not pass through the covalent/metallic region and
            the radius is placed at the minimum between the two atoms.

        """
        if self._atom_elf_radii_types is None:
            # make sure spin up/down labelers have calculated radii
            self.atom_elf_radii
            # default to covalent
            self._atom_elf_radii_types = (
                self.elf_labeler_up._atom_elf_radii_types
                | self.elf_labeler_down._atom_elf_radii_types
            )
        # convert to strings and return
        return np.where(self._atom_elf_radii_types, "covalent", "ionic")

    @property
    def atom_nn_elf_radii(self) -> NDArray[np.float64]:
        """

        Returns
        -------
        NDArray
            The elf radii for each atom and its neighboring atoms in the same
            order as the nearest_neighbor_data property. Radii are taken as
            averages between the spin-up and spin-down systems.

        """
        if self._atom_nn_elf_radii is None:
            # get the atomic radii from the spin up/down systems
            spin_up_radii = self.elf_labeler_up.atom_nn_elf_radii
            spin_down_radii = self.elf_labeler_down.atom_nn_elf_radii
            self._atom_nn_elf_radii = (spin_up_radii + spin_down_radii) / 2
        return self._atom_nn_elf_radii

    @property
    def atom_nn_elf_radii_types(self) -> NDArray[np.float64]:
        """

        Returns
        -------
        NDArray
            The type of radius for each atom and its neighboring atoms in the same
            order as the nearest_neighbor_data property.

        """
        if self._atom_nn_elf_radii_types is None:
            # make sure spin up/down labelers have calculated radii
            self.atom_nn_elf_radii
            # default to covalent
            self._atom_nn_elf_radii_types = (
                self.elf_labeler_up._atom_nn_elf_radii_types
                | self.elf_labeler_down._atom_nn_elf_radii_types
            )
        # convert to strings and return
        return np.where(self._atom_nn_elf_radii_types, "covalent", "ionic")

    @property
    def labeled_structure(self) -> Structure:
        """

        Returns
        -------
        Structure
            The system's structure including dummy atoms representing electride
            sites and covalent/metallic bonds. Features unique to the spin-up/spin-down
            systems will have xu or xd appended to the species name respectively.
            Features that exist in both will have nothing appended.

        """
        if self._labeled_structure is None:
            # start with only atoms
            labeled_structure = self.structure.copy()
            # get up and downs structures
            structure_up = self.elf_labeler_up.labeled_structure
            structure_down = self.elf_labeler_down.labeled_structure
            # get species from the spin up system
            new_species = []
            new_coords = []
            for site in structure_up[len(self.structure) :]:
                species = site.specie.symbol
                # add frac coords no matter what
                new_coords.append(site.frac_coords)
                # if this site is in the spin-down structure, it exists in both and
                # we add the site with the original species name
                if site in structure_down:
                    new_species.append(species)
                else:
                    # otherwise, we rename the species
                    new_species.append(species + "xu")
            # do the same for the spin down system
            for site in structure_down[len(self.structure) :]:
                # only add the structure if it didn't exist in the spin up system
                if site not in structure_up:
                    species = site.specie.symbol
                    new_species.append(species + "xd")
                    new_coords.append(site.frac_coords)
            # add our sites
            for species, coords in zip(new_species, new_coords):
                labeled_structure.append(species, coords)
            self._labeled_structure = labeled_structure
        return self._labeled_structure

    @property
    def electride_structure(self) -> Structure:
        """

        Returns
        -------
        Structure
            The system's structure including dummy atoms representing electride
            sites. Electrides unique to the spin-up/spin-down
            systems will have xu or xd appended to the species name respectively.
            Electrides that exist in both will have nothing appended.

        """
        if self._electride_structure is None:
            # start with only atoms
            labeled_structure = self.structure.copy()
            # get up and downs structures
            structure_up = self.elf_labeler_up.electride_structure
            structure_down = self.elf_labeler_down.electride_structure
            # get species from the spin up system
            new_species = []
            new_coords = []
            for site in structure_up[len(self.structure) :]:
                species = site.specie.symbol
                # add frac coords no matter what
                new_coords.append(site.frac_coords)
                # if this site is in the spin-down structure, it exists in both and
                # we add the site with the original species name
                if site in structure_down:
                    new_species.append(species)
                else:
                    # otherwise, we rename the species
                    new_species.append(species + "xu")
            # do the same for the spin down system
            for site in structure_down[len(self.structure) :]:
                # only add the structure if it didn't exist in the spin up system
                if site not in structure_up:
                    species = site.specie.symbol
                    new_species.append(species + "xd")
                    new_coords.append(site.frac_coords)
            # add our sites
            for species, coords in zip(new_species, new_coords):
                labeled_structure.append(species, coords)
            self._electride_structure = labeled_structure

        return self._electride_structure

    @property
    def nelectrides(self) -> int:
        """

        Returns
        -------
        int
            The number of electride sites in the structure

        """
        return len(self.electride_structure) - len(self.structure)

    @property
    def electride_formula(self):
        """

        Returns
        -------
        str
            A string representation of the electride formula, rounding partial charge
            to the nearest integer.

        """
        return f"{self.structure.formula} e{round(self.electrides_per_formula)}"

    @property
    def electrides_per_formula(self):
        """

        Returns
        -------
        float
            The number of electride electrons for the full structure formula.

        """
        if self._electrides_per_formula is None:
            electrides_per_unit = (
                self.elf_labeler_up.electrides_per_formula
                + self.elf_labeler_down.electrides_per_formula
            )
            self._electrides_per_formula = electrides_per_unit
        return self._electrides_per_formula

    @property
    def electrides_per_reduced_formula(self):
        """

        Returns
        -------
        float
            The number of electrons in the reduced formula of the structure.

        """
        if self._electrides_per_reduced_formula is None:
            (
                _,
                formula_reduction_factor,
            ) = self.structure.composition.get_reduced_composition_and_factor()
            self._electrides_per_reduced_formula = (
                self.electrides_per_formula / formula_reduction_factor
            )
        return self._electrides_per_reduced_formula

    def get_charges_and_volumes(
        self,
        use_electrides: bool = True,
        **kwargs,
    ):
        """
        Calculates charges and volumes by splitting feature charges/volumes to
        their neighboring atoms.

        NOTE: Volumes may not have a physical meaning when differences are found
        between spin up/down systems. They are calculated as the average between
        the systems.

        Parameters
        ----------
        use_electrides : bool, optional
            Whether or not to consider electrides as quasi-atoms. The default is True.
        **kwargs : dict
            Any keyword arguments to use in the corresponding ElfLabeler method
            for each spin system.

        Returns
        -------
        tuple
            The charges and volumes calculated for each atom.

        """

        # get the initial charges/volumes from the spin up system
        charges, volumes = self.elf_labeler_up.get_charges_and_volumes(
            use_electrides=use_electrides, **kwargs
        )
        # convert to lists
        charges = charges.tolist()
        volumes = volumes.tolist()

        # get the charges from the spin down system
        charges_down, volumes_down = self.elf_labeler_down.get_charges_and_volumes(
            use_electrides=use_electrides, **kwargs
        )
        # get structures from each system
        if use_electrides:
            structure_up = self.elf_labeler_up.electride_structure
            structure_down = self.elf_labeler_down.electride_structure
        else:
            structure_up = self.structure
            structure_down = self.structure
        # add charge from spin down structure
        for site, charge, volume in zip(structure_down, charges_down, volumes_down):
            if site in structure_up:
                index = structure_up.index(site)
                charges[index] += charge
                volumes[index] += volume
            else:
                charges.append(charge)
                volumes.append(volume)
        return np.array(charges), np.array(volumes) / 2

    def get_oxidation_and_volumes_from_potcar(
        self, potcar_path: Path = "POTCAR", use_electrides: bool = True, **kwargs
    ):
        """
        Calculates oxidation states, charges, and volumes by splitting feature
        charges/volumes to their neighboring atoms and comparing to the valence
        electrons in the POTCAR.

        NOTE: Volumes may not have a physical meaning when differences are found
        between spin up/down systems. They are calculated as the average between
        the systems.

        Parameters
        ----------
        potcar_path : Path | str, optional
            The Path to the POTCAR file. The default is "POTCAR".
        use_electrides : bool, optional
            Whether or not to consider electrides as quasi-atoms. The default is True.
        **kwargs : dict
            Any keyword arguments to use in the corresponding ElfLabeler method
            for each spin system.

        Returns
        -------
        tuple
            The oxidation states, charges, and volumes calculated for each atom.

        """

        # get the charges/volumes
        charges, volumes = self.get_charges_and_volumes(
            use_electrides=use_electrides, **kwargs
        )
        # convert to path
        potcar_path = Path(potcar_path)
        # check if potcar exists. If not, return None and a warning
        if not potcar_path.exists():
            logging.warning(
                "No POTCAR found at provided path. No oxidation states will be calculated."
            )
            return None, charges, volumes

        # load
        with warnings.catch_warnings(record=True):
            potcars = Potcar.from_file(potcar_path)
        nelectron_data = {}
        # the result is a list because there can be multiple element potcars
        # in the file (e.g. for NaCl, POTCAR = POTCAR_Na + POTCAR_Cl)
        for potcar in potcars:
            nelectron_data.update({potcar.element: potcar.nelectrons})
        # calculate oxidation states
        if use_electrides:
            structure = self.electride_structure
        else:
            structure = self.structure

        oxi_state_data = []
        for site, site_charge in zip(structure, charges):
            element_str = site.specie.symbol
            val_electrons = nelectron_data.get(element_str, 0.0)
            oxi_state = val_electrons - site_charge
            oxi_state_data.append(oxi_state)

        return np.array(oxi_state_data), charges, volumes

    def write_bifurcation_plot(self, filename: str | Path):
        """
        Writes an html plot representing the bifurcation graph.

        Parameters
        ----------
        filename : str | Path
            The file to write the bifurcation plot to.

        """
        filename = Path(filename)

        if filename.suffix:
            filename_up = filename.with_name(f"{filename.stem}_up{filename.suffix}")
            filename_down = filename.with_name(f"{filename.stem}_down{filename.suffix}")
        else:
            filename_up = filename.with_name(f"{filename.name}_up")
            filename_down = filename.with_name(f"{filename.name}_down")

        self.elf_labeler_up.write_bifurcation_plot(filename_up)
        self.elf_labeler_down.write_bifurcation_plot(filename_down)

    ###########################################################################
    # Vacuum Properties
    ###########################################################################
    @property
    def vacuum_charge(self) -> float:
        """

        Returns
        -------
        float
            The charge assigned to the vacuum.

        """
        return self.elf_labeler_up.vacuum_charge + self.elf_labeler_down.vacuum_charge

    @property
    def vacuum_volume(self) -> float:
        """

        Returns
        -------
        float
            The total volume assigned to the vacuum. This is an average between
            the spin up and spin down values.

        """
        return (
            self.elf_labeler_up.vacuum_volume + self.elf_labeler_down.vacuum_volume
        ) / 2

    @property
    def total_electron_number(self) -> float:
        """

        Returns
        -------
        float
            The total number of electrons in the system calculated from the
            spin-up and spin-down systems. If this does not match the true
            total electron number within reasonable floating point error,
            there is a major problem.

        """

        return round(
            self.elf_labeler_up.total_electron_number
            + self.elf_labeler_down.total_electron_number,
            10,
        )

    @property
    def total_volume(self):
        """

        Returns
        -------
        float
            The total volume integrated in the system. This should match the
            volume of the structure. If it does not there may be a serious problem.

            This is the average of the two systems

        """

        return (
            self.elf_labeler_up.total_volume + self.elf_labeler_down.total_volume
        ) / 2

    ###########################################################################
    # From methods
    ###########################################################################
    @classmethod
    def from_vasp(
        cls,
        charge_filename: Path | str = "CHGCAR",
        reference_filename: Path | str = "ELFCAR",
        **kwargs,
    ) -> Self:
        """
        Creates a SpinElfAnalysis class object from VASP files.

        Parameters
        ----------
        charge_filename : Path | str, optional
            The path to the CHGCAR like file that will be used for summing charge.
            The default is "CHGCAR".
        reference_filename : Path | str
            The path to ELFCAR like file that will be used for partitioning.
            If None, the charge file will be used for partitioning.
        total_only: bool
            If true, only the first set of data in the file will be read. This
            increases speed and reduced memory usage as the other data is typically
            not used.
            Defaults to True.
        **kwargs : dict
            Keyword arguments to pass to the Bader class.

        Returns
        -------
        Self
            A SpinElfAnalysis class object.

        """
        charge_grid = Grid.from_vasp(charge_filename, total_only=False)
        if reference_filename is None:
            reference_grid = None
        else:
            reference_grid = Grid.from_vasp(reference_filename, total_only=False)

        return cls(charge_grid=charge_grid, reference_grid=reference_grid, **kwargs)

    # TODO: Currently this class is only useful for VASP because .cube files
    # typically only contain a single grid. Is there a reason to create a convenience
    # function for cube files?

    def to_dict(
        self,
        potcar_path: Path | str = "POTCAR",
        use_json: bool = True,
        splitting_method: Literal[
            "equal", "pauling", "dist", "weighted_dist", "nearest"
        ] = "weighted_dist",
    ) -> dict:
        """

        Gets a dictionary summary of the ElfLabeler analysis.

        Parameters
        ----------
        potcar_path : Path | str, optional
            The Path to a POTCAR file. This must be provided for oxidation states
            to be calculated, and they will be None otherwise. The default is "POTCAR".
        use_json : bool, optional
            Convert all entries to JSONable data types. The default is True.
        splitting_method : Literal["equal", "pauling", "dist", "weighted_dist", "nearest"], optional
            See :meth:`write_feature_basins`.

        Returns
        -------
        dict
            A summary of the ElfLabeler analysis in dictionary form.

        """
        results = {}
        # collect method kwargs
        results["method_kwargs"] = {
            "splitting_method": splitting_method,
        }

        oxidation_states, charges, volumes = self.get_oxidation_and_volumes_from_potcar(
            potcar_path=potcar_path, use_electrides=False
        )
        oxidation_states_e, charges_e, volumes_e = (
            self.get_oxidation_and_volumes_from_potcar(
                potcar_path=potcar_path, use_electrides=True
            )
        )

        if oxidation_states is not None:
            oxidation_states = oxidation_states.tolist()
            oxidation_states_e = oxidation_states_e.tolist()

        results["oxidation_states"] = oxidation_states
        results["oxidation_states_e"] = oxidation_states_e
        results["charges"] = charges.tolist()
        results["charges_e"] = charges_e.tolist()
        results["volumes"] = volumes.tolist()
        results["volumes_e"] = volumes_e.tolist()

        # add objects that can convert to json
        for result in [
            "structure",
            "labeled_structure",
            "electride_structure",
        ]:
            result_obj = getattr(self, result, None)
            if result_obj is not None and use_json:
                result_obj = result_obj.to_json()
            results[result] = result_obj

        # add objects that are arrays
        for result in [
            "atom_elf_radii",
            "atom_elf_radii_types",
            "atom_elf_radii_e",
            "atom_elf_radii_types_e",
        ]:
            result_obj = getattr(self, result, None)
            if use_json and result_obj is not None:
                result_obj = result_obj.tolist()
            results[result] = result_obj

        # add other objects that are already jsonable
        for result in [
            "spin_system",
            "nelectrides",
            "feature_types",
            "electride_formula",
            "electrides_per_formula",
            "electrides_per_reduced_formula",
            "total_electron_number",
            "total_volume",
            "vacuum_charge",
            "vacuum_volume",
        ]:
            results[result] = getattr(self, result, None)

        return results

    def to_json(self, **kwargs) -> str:
        """
        Creates a JSON string representation of the results, typically for writing
        results to file.

        Parameters
        ----------
        **kwargs : dict
            Keyword arguments for the to_dict method.

        Returns
        -------
        str
            A JSON string representation of the BadELF results.

        """
        return json.dumps(self.to_dict(use_json=True, **kwargs))

    def write_json(self, filepath: Path | str = "elf_labeler.json", **kwargs) -> None:
        """
        Writes results of the analysis to file in a JSON format.

        Parameters
        ----------
        filepath : Path | str, optional
            The Path to write the results to. The default is "badelf_results_summary.json".
        **kwargs : dict
            keyword arguments for the to_dict method.

        """
        filepath = Path(filepath)
        # write spin up and spin down summaries
        filepath_up = filepath.parent / f"{filepath.stem}_up{filepath.suffix}"
        filepath_down = filepath.parent / f"{filepath.stem}_down{filepath.suffix}"
        self.elf_labeler_up.write_json(filepath=filepath_up, **kwargs)
        self.elf_labeler_down.write_json(filepath=filepath_down, **kwargs)

        # write total spin summary
        with open(filepath, "w") as json_file:
            json.dump(self.to_dict(use_json=True, **kwargs), json_file, indent=4)

    def write_all_features(
        self,
        directory: str | Path = Path("."),
        write_reference: bool = True,
        prefix_override: str = None,
        **kwargs,
    ):
        """
        Writes the bader basins associated with all features

        Parameters
        ----------
        directory : str | Path, optional
            The directory to write to. The default is None.
        write_reference : bool, optional
            Whether or not to write the reference data rather than the charge
            density. The default is True.
        prefix_override : str, optional
            The string to add at the front of the output path. If None, defaults
            to the VASP file name equivalent to the data type stored in the
            grid. The default is None.
        **kwargs : dict
            Keyword arguments to pass to the ElfLabeler write method.

        """

        if directory is None:
            directory = Path(".")

        # get prefix
        if prefix_override is None:
            if write_reference:
                prefix_override = self.original_reference_grid.data_type.prefix
            else:
                prefix_override = self.original_charge_grid.data_type.prefix

        # temporarily update prefix override to avoid overwriting
        if self.equal_spin:
            temp_prefix = f"{prefix_override}_temp"
        else:
            temp_prefix = prefix_override

        for feat_idx in range(len(self.elf_labeler_up.feature_charges)):
            self.elf_labeler_up.write_feature_basins(
                feature_indices=[feat_idx],
                directory=directory,
                write_reference=write_reference,
                prefix_override=temp_prefix,
                **kwargs,
            )
            if not self.equal_spin:
                # rename with "up" so we don't overwrite
                os.rename(
                    directory / f"{temp_prefix}_f{feat_idx}",
                    directory / f"{prefix_override}_f{feat_idx}_up",
                )
            else:
                os.rename(
                    directory / f"{temp_prefix}_f{feat_idx}",
                    directory / f"{prefix_override}_f{feat_idx}",
                )
        if self.equal_spin:
            return
        # Write the spin down file and change the name
        for feat_idx in range(len(self.elf_labeler_down.feature_charges)):
            self.elf_labeler_down.write_feature_basins(
                feature_indices=[feat_idx],
                directory=directory,
                write_reference=write_reference,
                prefix_override=temp_prefix,
                **kwargs,
            )
            if not self.equal_spin:
                # rename with "up" so we don't overwrite
                os.rename(
                    directory / f"{temp_prefix}_f{feat_idx}",
                    directory / f"{prefix_override}_f{feat_idx}_down",
                )

    def write_features_by_type(
        self,
        included_types: list[FeatureType],
        directory: str | Path = Path("."),
        prefix_override=None,
        write_reference: bool = True,
        **kwargs,
    ):
        """

        Writes the reference ELF or charge-density for the the union of the
        given atoms to a single file.

        Parameters
        ----------
        included_types : list[FeatureType]
            The types of features to include, e.g. metallic, lone-pair, etc.
        directory : str | Path
            The directory to write the files in. If None, the active directory
            is used.
        prefix_override : str, optional
            The string to add at the front of the output path. If None, defaults
            to the VASP file name equivalent to the data type stored in the
            grid.
        write_reference : bool, optional
            Whether or not to write the reference data rather than the charge data.
            Default is True.
        **kwargs :
            See :meth:`write_feature_basins`.

        """
        if directory is None:
            directory = Path(".")

        # get prefix
        if prefix_override is None:
            if write_reference:
                prefix_override = self.original_reference_grid.data_type.prefix
            else:
                prefix_override = self.original_charge_grid.data_type.prefix

        # temporarily update prefix override to avoid overwriting
        if self.equal_spin:
            temp_prefix = f"{prefix_override}_temp"
        else:
            temp_prefix = prefix_override

        for feat_type in included_types:
            feat_type = FeatureType(feat_type)

            self.elf_labeler_up.write_features_by_type(
                included_types=[feat_type],
                directory=directory,
                write_reference=write_reference,
                prefix_override=temp_prefix,
                **kwargs,
            )

            if not self.equal_spin:
                # rename with "up" so we don't overwrite
                os.rename(
                    directory / f"{temp_prefix}_{feat_type.dummy_species}",
                    directory / f"{prefix_override}_{feat_type.dummy_species}_up",
                )
            else:
                os.rename(
                    directory / f"{temp_prefix}_{feat_type.dummy_species}",
                    directory / f"{prefix_override}_{feat_type.dummy_species}",
                )
                return

                # Write the spin down file and change the name
            # temporarily update prefix override to avoid overwriting
            self.elf_labeler_down.write_features_by_type(
                included_types=[feat_type],
                directory=directory,
                write_reference=write_reference,
                prefix_override=temp_prefix,
                **kwargs,
            )
            if not self.equal_spin:
                # rename with "up" so we don't overwrite
                os.rename(
                    directory / f"{temp_prefix}_{feat_type.dummy_species}",
                    directory / f"{prefix_override}_{feat_type.dummy_species}_down",
                )

    def write_features_by_type_sum(
        self,
        included_types: list[FeatureType],
        directory: str | Path = Path("."),
        prefix_override=None,
        write_reference: bool = True,
        **kwargs,
    ):
        """

        Writes the reference ELF or charge-density for the the union of the
        given atoms to a single file.

        Parameters
        ----------
        included_types : list[FeatureType]
            The types of features to include, e.g. metallic, lone-pair, etc.
        directory : str | Path
            The directory to write the files in. If None, the active directory
            is used.
        prefix_override : str, optional
            The string to add at the front of the output path. If None, defaults
            to the VASP file name equivalent to the data type stored in the
            grid.
        write_reference : bool, optional
            Whether or not to write the reference data rather than the charge data.
            Default is True.
        **kwargs :
            See :meth:`write_feature_basins`.

        """
        if directory is None:
            directory = Path(".")

        # get prefix
        if prefix_override is None:
            if write_reference:
                prefix_override = self.original_reference_grid.data_type.prefix
            else:
                prefix_override = self.original_charge_grid.data_type.prefix

        # temporarily update prefix override to avoid overwriting
        if self.equal_spin:
            temp_prefix = f"{prefix_override}_temp"
        else:
            temp_prefix = prefix_override

        self.elf_labeler_up.write_features_by_type_sum(
            included_types=included_types,
            directory=directory,
            write_reference=write_reference,
            prefix_override=temp_prefix,
            **kwargs,
        )
        if not self.equal_spin:
            # rename with "up" so we don't overwrite
            os.rename(
                directory / f"{temp_prefix}_fsum",
                directory / f"{prefix_override}_fsum_up",
            )
        else:
            os.rename(
                directory / f"{temp_prefix}_fsum",
                directory / f"{prefix_override}_fsum",
            )
            return

        # Write the spin down file and change the name
        # temporarily update prefix override to avoid overwriting
        self.elf_labeler_down.write_features_by_type_sum(
            included_types=included_types,
            directory=directory,
            write_reference=write_reference,
            prefix_override=temp_prefix,
            **kwargs,
        )
        if not self.equal_spin:
            # rename with "up" so we don't overwrite
            os.rename(
                directory / f"{temp_prefix}_fsum",
                directory / f"{prefix_override}_fsum_down",
            )

atom_elf_radii property

Returns:

Type Description
NDArray

The radius of each atom calculated from the ELF using the closest neighboring atom in the structure. This is taken as the average value from both spin systems.

atom_elf_radii_types property

Returns:

Type Description
NDArray

The type of radius of each elf radius. Covalent indicates that the bond crosses through some covalent or metallic region, and the radius is placed at the maximum in the ELF in this region. Ionic indicates that the bond does not pass through the covalent/metallic region and the radius is placed at the minimum between the two atoms.

atom_nn_elf_radii property

Returns:

Type Description
NDArray

The elf radii for each atom and its neighboring atoms in the same order as the nearest_neighbor_data property. Radii are taken as averages between the spin-up and spin-down systems.

atom_nn_elf_radii_types property

Returns:

Type Description
NDArray

The type of radius for each atom and its neighboring atoms in the same order as the nearest_neighbor_data property.

electride_formula property

Returns:

Type Description
str

A string representation of the electride formula, rounding partial charge to the nearest integer.

electride_structure property

Returns:

Type Description
Structure

The system's structure including dummy atoms representing electride sites. Electrides unique to the spin-up/spin-down systems will have xu or xd appended to the species name respectively. Electrides that exist in both will have nothing appended.

electrides_per_formula property

Returns:

Type Description
float

The number of electride electrons for the full structure formula.

electrides_per_reduced_formula property

Returns:

Type Description
float

The number of electrons in the reduced formula of the structure.

labeled_structure property

Returns:

Type Description
Structure

The system's structure including dummy atoms representing electride sites and covalent/metallic bonds. Features unique to the spin-up/spin-down systems will have xu or xd appended to the species name respectively. Features that exist in both will have nothing appended.

nearest_neighbor_data property

Returns:

Type Description
tuple

The nearest neighbor data for the atoms in the system represented as a tuple of arrays. The arrays represent, in order, the central atoms index, its neighbors index, the fractional coordinates of the neighbor, and the distance between the two sites.

nelectrides property

Returns:

Type Description
int

The number of electride sites in the structure

structure property

Returns:

Type Description
Structure

The PyMatGen Structure representing the system.

total_electron_number property

Returns:

Type Description
float

The total number of electrons in the system calculated from the spin-up and spin-down systems. If this does not match the true total electron number within reasonable floating point error, there is a major problem.

total_volume property

Returns:

Type Description
float

The total volume integrated in the system. This should match the volume of the structure. If it does not there may be a serious problem.

This is the average of the two systems

vacuum_charge property

Returns:

Type Description
float

The charge assigned to the vacuum.

vacuum_volume property

Returns:

Type Description
float

The total volume assigned to the vacuum. This is an average between the spin up and spin down values.

from_vasp(charge_filename='CHGCAR', reference_filename='ELFCAR', **kwargs) classmethod

Creates a SpinElfAnalysis class object from VASP files.

Parameters:

Name Type Description Default
charge_filename Path | str

The path to the CHGCAR like file that will be used for summing charge. The default is "CHGCAR".

'CHGCAR'
reference_filename Path | str

The path to ELFCAR like file that will be used for partitioning. If None, the charge file will be used for partitioning.

'ELFCAR'
total_only

If true, only the first set of data in the file will be read. This increases speed and reduced memory usage as the other data is typically not used. Defaults to True.

required
**kwargs dict

Keyword arguments to pass to the Bader class.

{}

Returns:

Type Description
Self

A SpinElfAnalysis class object.

Source code in src/baderkit/core/labelers/elf_labeler/elf_labeler_spin.py
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
@classmethod
def from_vasp(
    cls,
    charge_filename: Path | str = "CHGCAR",
    reference_filename: Path | str = "ELFCAR",
    **kwargs,
) -> Self:
    """
    Creates a SpinElfAnalysis class object from VASP files.

    Parameters
    ----------
    charge_filename : Path | str, optional
        The path to the CHGCAR like file that will be used for summing charge.
        The default is "CHGCAR".
    reference_filename : Path | str
        The path to ELFCAR like file that will be used for partitioning.
        If None, the charge file will be used for partitioning.
    total_only: bool
        If true, only the first set of data in the file will be read. This
        increases speed and reduced memory usage as the other data is typically
        not used.
        Defaults to True.
    **kwargs : dict
        Keyword arguments to pass to the Bader class.

    Returns
    -------
    Self
        A SpinElfAnalysis class object.

    """
    charge_grid = Grid.from_vasp(charge_filename, total_only=False)
    if reference_filename is None:
        reference_grid = None
    else:
        reference_grid = Grid.from_vasp(reference_filename, total_only=False)

    return cls(charge_grid=charge_grid, reference_grid=reference_grid, **kwargs)

get_charges_and_volumes(use_electrides=True, **kwargs)

Calculates charges and volumes by splitting feature charges/volumes to their neighboring atoms.

NOTE: Volumes may not have a physical meaning when differences are found between spin up/down systems. They are calculated as the average between the systems.

Parameters:

Name Type Description Default
use_electrides bool

Whether or not to consider electrides as quasi-atoms. The default is True.

True
**kwargs dict

Any keyword arguments to use in the corresponding ElfLabeler method for each spin system.

{}

Returns:

Type Description
tuple

The charges and volumes calculated for each atom.

Source code in src/baderkit/core/labelers/elf_labeler/elf_labeler_spin.py
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
def get_charges_and_volumes(
    self,
    use_electrides: bool = True,
    **kwargs,
):
    """
    Calculates charges and volumes by splitting feature charges/volumes to
    their neighboring atoms.

    NOTE: Volumes may not have a physical meaning when differences are found
    between spin up/down systems. They are calculated as the average between
    the systems.

    Parameters
    ----------
    use_electrides : bool, optional
        Whether or not to consider electrides as quasi-atoms. The default is True.
    **kwargs : dict
        Any keyword arguments to use in the corresponding ElfLabeler method
        for each spin system.

    Returns
    -------
    tuple
        The charges and volumes calculated for each atom.

    """

    # get the initial charges/volumes from the spin up system
    charges, volumes = self.elf_labeler_up.get_charges_and_volumes(
        use_electrides=use_electrides, **kwargs
    )
    # convert to lists
    charges = charges.tolist()
    volumes = volumes.tolist()

    # get the charges from the spin down system
    charges_down, volumes_down = self.elf_labeler_down.get_charges_and_volumes(
        use_electrides=use_electrides, **kwargs
    )
    # get structures from each system
    if use_electrides:
        structure_up = self.elf_labeler_up.electride_structure
        structure_down = self.elf_labeler_down.electride_structure
    else:
        structure_up = self.structure
        structure_down = self.structure
    # add charge from spin down structure
    for site, charge, volume in zip(structure_down, charges_down, volumes_down):
        if site in structure_up:
            index = structure_up.index(site)
            charges[index] += charge
            volumes[index] += volume
        else:
            charges.append(charge)
            volumes.append(volume)
    return np.array(charges), np.array(volumes) / 2

get_oxidation_and_volumes_from_potcar(potcar_path='POTCAR', use_electrides=True, **kwargs)

Calculates oxidation states, charges, and volumes by splitting feature charges/volumes to their neighboring atoms and comparing to the valence electrons in the POTCAR.

NOTE: Volumes may not have a physical meaning when differences are found between spin up/down systems. They are calculated as the average between the systems.

Parameters:

Name Type Description Default
potcar_path Path | str

The Path to the POTCAR file. The default is "POTCAR".

'POTCAR'
use_electrides bool

Whether or not to consider electrides as quasi-atoms. The default is True.

True
**kwargs dict

Any keyword arguments to use in the corresponding ElfLabeler method for each spin system.

{}

Returns:

Type Description
tuple

The oxidation states, charges, and volumes calculated for each atom.

Source code in src/baderkit/core/labelers/elf_labeler/elf_labeler_spin.py
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
def get_oxidation_and_volumes_from_potcar(
    self, potcar_path: Path = "POTCAR", use_electrides: bool = True, **kwargs
):
    """
    Calculates oxidation states, charges, and volumes by splitting feature
    charges/volumes to their neighboring atoms and comparing to the valence
    electrons in the POTCAR.

    NOTE: Volumes may not have a physical meaning when differences are found
    between spin up/down systems. They are calculated as the average between
    the systems.

    Parameters
    ----------
    potcar_path : Path | str, optional
        The Path to the POTCAR file. The default is "POTCAR".
    use_electrides : bool, optional
        Whether or not to consider electrides as quasi-atoms. The default is True.
    **kwargs : dict
        Any keyword arguments to use in the corresponding ElfLabeler method
        for each spin system.

    Returns
    -------
    tuple
        The oxidation states, charges, and volumes calculated for each atom.

    """

    # get the charges/volumes
    charges, volumes = self.get_charges_and_volumes(
        use_electrides=use_electrides, **kwargs
    )
    # convert to path
    potcar_path = Path(potcar_path)
    # check if potcar exists. If not, return None and a warning
    if not potcar_path.exists():
        logging.warning(
            "No POTCAR found at provided path. No oxidation states will be calculated."
        )
        return None, charges, volumes

    # load
    with warnings.catch_warnings(record=True):
        potcars = Potcar.from_file(potcar_path)
    nelectron_data = {}
    # the result is a list because there can be multiple element potcars
    # in the file (e.g. for NaCl, POTCAR = POTCAR_Na + POTCAR_Cl)
    for potcar in potcars:
        nelectron_data.update({potcar.element: potcar.nelectrons})
    # calculate oxidation states
    if use_electrides:
        structure = self.electride_structure
    else:
        structure = self.structure

    oxi_state_data = []
    for site, site_charge in zip(structure, charges):
        element_str = site.specie.symbol
        val_electrons = nelectron_data.get(element_str, 0.0)
        oxi_state = val_electrons - site_charge
        oxi_state_data.append(oxi_state)

    return np.array(oxi_state_data), charges, volumes

to_dict(potcar_path='POTCAR', use_json=True, splitting_method='weighted_dist')

Gets a dictionary summary of the ElfLabeler analysis.

Parameters:

Name Type Description Default
potcar_path Path | str

The Path to a POTCAR file. This must be provided for oxidation states to be calculated, and they will be None otherwise. The default is "POTCAR".

'POTCAR'
use_json bool

Convert all entries to JSONable data types. The default is True.

True
splitting_method Literal['equal', 'pauling', 'dist', 'weighted_dist', 'nearest']

See :meth:write_feature_basins.

'weighted_dist'

Returns:

Type Description
dict

A summary of the ElfLabeler analysis in dictionary form.

Source code in src/baderkit/core/labelers/elf_labeler/elf_labeler_spin.py
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
def to_dict(
    self,
    potcar_path: Path | str = "POTCAR",
    use_json: bool = True,
    splitting_method: Literal[
        "equal", "pauling", "dist", "weighted_dist", "nearest"
    ] = "weighted_dist",
) -> dict:
    """

    Gets a dictionary summary of the ElfLabeler analysis.

    Parameters
    ----------
    potcar_path : Path | str, optional
        The Path to a POTCAR file. This must be provided for oxidation states
        to be calculated, and they will be None otherwise. The default is "POTCAR".
    use_json : bool, optional
        Convert all entries to JSONable data types. The default is True.
    splitting_method : Literal["equal", "pauling", "dist", "weighted_dist", "nearest"], optional
        See :meth:`write_feature_basins`.

    Returns
    -------
    dict
        A summary of the ElfLabeler analysis in dictionary form.

    """
    results = {}
    # collect method kwargs
    results["method_kwargs"] = {
        "splitting_method": splitting_method,
    }

    oxidation_states, charges, volumes = self.get_oxidation_and_volumes_from_potcar(
        potcar_path=potcar_path, use_electrides=False
    )
    oxidation_states_e, charges_e, volumes_e = (
        self.get_oxidation_and_volumes_from_potcar(
            potcar_path=potcar_path, use_electrides=True
        )
    )

    if oxidation_states is not None:
        oxidation_states = oxidation_states.tolist()
        oxidation_states_e = oxidation_states_e.tolist()

    results["oxidation_states"] = oxidation_states
    results["oxidation_states_e"] = oxidation_states_e
    results["charges"] = charges.tolist()
    results["charges_e"] = charges_e.tolist()
    results["volumes"] = volumes.tolist()
    results["volumes_e"] = volumes_e.tolist()

    # add objects that can convert to json
    for result in [
        "structure",
        "labeled_structure",
        "electride_structure",
    ]:
        result_obj = getattr(self, result, None)
        if result_obj is not None and use_json:
            result_obj = result_obj.to_json()
        results[result] = result_obj

    # add objects that are arrays
    for result in [
        "atom_elf_radii",
        "atom_elf_radii_types",
        "atom_elf_radii_e",
        "atom_elf_radii_types_e",
    ]:
        result_obj = getattr(self, result, None)
        if use_json and result_obj is not None:
            result_obj = result_obj.tolist()
        results[result] = result_obj

    # add other objects that are already jsonable
    for result in [
        "spin_system",
        "nelectrides",
        "feature_types",
        "electride_formula",
        "electrides_per_formula",
        "electrides_per_reduced_formula",
        "total_electron_number",
        "total_volume",
        "vacuum_charge",
        "vacuum_volume",
    ]:
        results[result] = getattr(self, result, None)

    return results

to_json(**kwargs)

Creates a JSON string representation of the results, typically for writing results to file.

Parameters:

Name Type Description Default
**kwargs dict

Keyword arguments for the to_dict method.

{}

Returns:

Type Description
str

A JSON string representation of the BadELF results.

Source code in src/baderkit/core/labelers/elf_labeler/elf_labeler_spin.py
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
def to_json(self, **kwargs) -> str:
    """
    Creates a JSON string representation of the results, typically for writing
    results to file.

    Parameters
    ----------
    **kwargs : dict
        Keyword arguments for the to_dict method.

    Returns
    -------
    str
        A JSON string representation of the BadELF results.

    """
    return json.dumps(self.to_dict(use_json=True, **kwargs))

write_all_features(directory=Path('.'), write_reference=True, prefix_override=None, **kwargs)

Writes the bader basins associated with all features

Parameters:

Name Type Description Default
directory str | Path

The directory to write to. The default is None.

Path('.')
write_reference bool

Whether or not to write the reference data rather than the charge density. The default is True.

True
prefix_override str

The string to add at the front of the output path. If None, defaults to the VASP file name equivalent to the data type stored in the grid. The default is None.

None
**kwargs dict

Keyword arguments to pass to the ElfLabeler write method.

{}
Source code in src/baderkit/core/labelers/elf_labeler/elf_labeler_spin.py
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
def write_all_features(
    self,
    directory: str | Path = Path("."),
    write_reference: bool = True,
    prefix_override: str = None,
    **kwargs,
):
    """
    Writes the bader basins associated with all features

    Parameters
    ----------
    directory : str | Path, optional
        The directory to write to. The default is None.
    write_reference : bool, optional
        Whether or not to write the reference data rather than the charge
        density. The default is True.
    prefix_override : str, optional
        The string to add at the front of the output path. If None, defaults
        to the VASP file name equivalent to the data type stored in the
        grid. The default is None.
    **kwargs : dict
        Keyword arguments to pass to the ElfLabeler write method.

    """

    if directory is None:
        directory = Path(".")

    # get prefix
    if prefix_override is None:
        if write_reference:
            prefix_override = self.original_reference_grid.data_type.prefix
        else:
            prefix_override = self.original_charge_grid.data_type.prefix

    # temporarily update prefix override to avoid overwriting
    if self.equal_spin:
        temp_prefix = f"{prefix_override}_temp"
    else:
        temp_prefix = prefix_override

    for feat_idx in range(len(self.elf_labeler_up.feature_charges)):
        self.elf_labeler_up.write_feature_basins(
            feature_indices=[feat_idx],
            directory=directory,
            write_reference=write_reference,
            prefix_override=temp_prefix,
            **kwargs,
        )
        if not self.equal_spin:
            # rename with "up" so we don't overwrite
            os.rename(
                directory / f"{temp_prefix}_f{feat_idx}",
                directory / f"{prefix_override}_f{feat_idx}_up",
            )
        else:
            os.rename(
                directory / f"{temp_prefix}_f{feat_idx}",
                directory / f"{prefix_override}_f{feat_idx}",
            )
    if self.equal_spin:
        return
    # Write the spin down file and change the name
    for feat_idx in range(len(self.elf_labeler_down.feature_charges)):
        self.elf_labeler_down.write_feature_basins(
            feature_indices=[feat_idx],
            directory=directory,
            write_reference=write_reference,
            prefix_override=temp_prefix,
            **kwargs,
        )
        if not self.equal_spin:
            # rename with "up" so we don't overwrite
            os.rename(
                directory / f"{temp_prefix}_f{feat_idx}",
                directory / f"{prefix_override}_f{feat_idx}_down",
            )

write_bifurcation_plot(filename)

Writes an html plot representing the bifurcation graph.

Parameters:

Name Type Description Default
filename str | Path

The file to write the bifurcation plot to.

required
Source code in src/baderkit/core/labelers/elf_labeler/elf_labeler_spin.py
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
def write_bifurcation_plot(self, filename: str | Path):
    """
    Writes an html plot representing the bifurcation graph.

    Parameters
    ----------
    filename : str | Path
        The file to write the bifurcation plot to.

    """
    filename = Path(filename)

    if filename.suffix:
        filename_up = filename.with_name(f"{filename.stem}_up{filename.suffix}")
        filename_down = filename.with_name(f"{filename.stem}_down{filename.suffix}")
    else:
        filename_up = filename.with_name(f"{filename.name}_up")
        filename_down = filename.with_name(f"{filename.name}_down")

    self.elf_labeler_up.write_bifurcation_plot(filename_up)
    self.elf_labeler_down.write_bifurcation_plot(filename_down)

write_features_by_type(included_types, directory=Path('.'), prefix_override=None, write_reference=True, **kwargs)

Writes the reference ELF or charge-density for the the union of the given atoms to a single file.

Parameters:

Name Type Description Default
included_types list[FeatureType]

The types of features to include, e.g. metallic, lone-pair, etc.

required
directory str | Path

The directory to write the files in. If None, the active directory is used.

Path('.')
prefix_override str

The string to add at the front of the output path. If None, defaults to the VASP file name equivalent to the data type stored in the grid.

None
write_reference bool

Whether or not to write the reference data rather than the charge data. Default is True.

True
**kwargs

See :meth:write_feature_basins.

{}
Source code in src/baderkit/core/labelers/elf_labeler/elf_labeler_spin.py
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
def write_features_by_type(
    self,
    included_types: list[FeatureType],
    directory: str | Path = Path("."),
    prefix_override=None,
    write_reference: bool = True,
    **kwargs,
):
    """

    Writes the reference ELF or charge-density for the the union of the
    given atoms to a single file.

    Parameters
    ----------
    included_types : list[FeatureType]
        The types of features to include, e.g. metallic, lone-pair, etc.
    directory : str | Path
        The directory to write the files in. If None, the active directory
        is used.
    prefix_override : str, optional
        The string to add at the front of the output path. If None, defaults
        to the VASP file name equivalent to the data type stored in the
        grid.
    write_reference : bool, optional
        Whether or not to write the reference data rather than the charge data.
        Default is True.
    **kwargs :
        See :meth:`write_feature_basins`.

    """
    if directory is None:
        directory = Path(".")

    # get prefix
    if prefix_override is None:
        if write_reference:
            prefix_override = self.original_reference_grid.data_type.prefix
        else:
            prefix_override = self.original_charge_grid.data_type.prefix

    # temporarily update prefix override to avoid overwriting
    if self.equal_spin:
        temp_prefix = f"{prefix_override}_temp"
    else:
        temp_prefix = prefix_override

    for feat_type in included_types:
        feat_type = FeatureType(feat_type)

        self.elf_labeler_up.write_features_by_type(
            included_types=[feat_type],
            directory=directory,
            write_reference=write_reference,
            prefix_override=temp_prefix,
            **kwargs,
        )

        if not self.equal_spin:
            # rename with "up" so we don't overwrite
            os.rename(
                directory / f"{temp_prefix}_{feat_type.dummy_species}",
                directory / f"{prefix_override}_{feat_type.dummy_species}_up",
            )
        else:
            os.rename(
                directory / f"{temp_prefix}_{feat_type.dummy_species}",
                directory / f"{prefix_override}_{feat_type.dummy_species}",
            )
            return

            # Write the spin down file and change the name
        # temporarily update prefix override to avoid overwriting
        self.elf_labeler_down.write_features_by_type(
            included_types=[feat_type],
            directory=directory,
            write_reference=write_reference,
            prefix_override=temp_prefix,
            **kwargs,
        )
        if not self.equal_spin:
            # rename with "up" so we don't overwrite
            os.rename(
                directory / f"{temp_prefix}_{feat_type.dummy_species}",
                directory / f"{prefix_override}_{feat_type.dummy_species}_down",
            )

write_features_by_type_sum(included_types, directory=Path('.'), prefix_override=None, write_reference=True, **kwargs)

Writes the reference ELF or charge-density for the the union of the given atoms to a single file.

Parameters:

Name Type Description Default
included_types list[FeatureType]

The types of features to include, e.g. metallic, lone-pair, etc.

required
directory str | Path

The directory to write the files in. If None, the active directory is used.

Path('.')
prefix_override str

The string to add at the front of the output path. If None, defaults to the VASP file name equivalent to the data type stored in the grid.

None
write_reference bool

Whether or not to write the reference data rather than the charge data. Default is True.

True
**kwargs

See :meth:write_feature_basins.

{}
Source code in src/baderkit/core/labelers/elf_labeler/elf_labeler_spin.py
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
def write_features_by_type_sum(
    self,
    included_types: list[FeatureType],
    directory: str | Path = Path("."),
    prefix_override=None,
    write_reference: bool = True,
    **kwargs,
):
    """

    Writes the reference ELF or charge-density for the the union of the
    given atoms to a single file.

    Parameters
    ----------
    included_types : list[FeatureType]
        The types of features to include, e.g. metallic, lone-pair, etc.
    directory : str | Path
        The directory to write the files in. If None, the active directory
        is used.
    prefix_override : str, optional
        The string to add at the front of the output path. If None, defaults
        to the VASP file name equivalent to the data type stored in the
        grid.
    write_reference : bool, optional
        Whether or not to write the reference data rather than the charge data.
        Default is True.
    **kwargs :
        See :meth:`write_feature_basins`.

    """
    if directory is None:
        directory = Path(".")

    # get prefix
    if prefix_override is None:
        if write_reference:
            prefix_override = self.original_reference_grid.data_type.prefix
        else:
            prefix_override = self.original_charge_grid.data_type.prefix

    # temporarily update prefix override to avoid overwriting
    if self.equal_spin:
        temp_prefix = f"{prefix_override}_temp"
    else:
        temp_prefix = prefix_override

    self.elf_labeler_up.write_features_by_type_sum(
        included_types=included_types,
        directory=directory,
        write_reference=write_reference,
        prefix_override=temp_prefix,
        **kwargs,
    )
    if not self.equal_spin:
        # rename with "up" so we don't overwrite
        os.rename(
            directory / f"{temp_prefix}_fsum",
            directory / f"{prefix_override}_fsum_up",
        )
    else:
        os.rename(
            directory / f"{temp_prefix}_fsum",
            directory / f"{prefix_override}_fsum",
        )
        return

    # Write the spin down file and change the name
    # temporarily update prefix override to avoid overwriting
    self.elf_labeler_down.write_features_by_type_sum(
        included_types=included_types,
        directory=directory,
        write_reference=write_reference,
        prefix_override=temp_prefix,
        **kwargs,
    )
    if not self.equal_spin:
        # rename with "up" so we don't overwrite
        os.rename(
            directory / f"{temp_prefix}_fsum",
            directory / f"{prefix_override}_fsum_down",
        )

write_json(filepath='elf_labeler.json', **kwargs)

Writes results of the analysis to file in a JSON format.

Parameters:

Name Type Description Default
filepath Path | str

The Path to write the results to. The default is "badelf_results_summary.json".

'elf_labeler.json'
**kwargs dict

keyword arguments for the to_dict method.

{}
Source code in src/baderkit/core/labelers/elf_labeler/elf_labeler_spin.py
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
def write_json(self, filepath: Path | str = "elf_labeler.json", **kwargs) -> None:
    """
    Writes results of the analysis to file in a JSON format.

    Parameters
    ----------
    filepath : Path | str, optional
        The Path to write the results to. The default is "badelf_results_summary.json".
    **kwargs : dict
        keyword arguments for the to_dict method.

    """
    filepath = Path(filepath)
    # write spin up and spin down summaries
    filepath_up = filepath.parent / f"{filepath.stem}_up{filepath.suffix}"
    filepath_down = filepath.parent / f"{filepath.stem}_down{filepath.suffix}"
    self.elf_labeler_up.write_json(filepath=filepath_up, **kwargs)
    self.elf_labeler_down.write_json(filepath=filepath_down, **kwargs)

    # write total spin summary
    with open(filepath, "w") as json_file:
        json.dump(self.to_dict(use_json=True, **kwargs), json_file, indent=4)